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Linear Transformations

» Afunctionz: r" — rm is called a linear transformation if
1. L(ax) = aL(xz) foOrevewye R* dane R
2. Llx+y)=L(x)+ L(y) foreverywy e R"
» If we fix the bases for: anel” , then the linear
transformation can be represented by a matrix.

» Theorem 3.1: Suppose that r~ IS a given vectorpand IS the
representation of  with respect to the given basisfor y = )
andy’' Is the representationsof with respect to the given basis
for pm, then/ = Az’ | wheree r>» and is callearitei x
representation of ..

» Special case: with respect to natural basesfor rand
y=L(x)=Ax



Linear Transformations

» Let{er,es...,e.} anck). e, ....e} be two baseg:for . Define the

matrix
T = [6/1 : 6{), cees 8;7]_1[81, €, ..., 87J

lel, e, ...;e,) = e, e ....e [T

that is, thath column ofr is the vector of coordinates,of
with respect to the basisi. e, . e}

» Given a vector, let be the coordinates of the vector with

respect tQe,,e,,....e,} and be the coordinates of the same
vector with respect t@), e,, ...} . Then, Tx



Example (Finding a Transition Matrix)

» Consider baseB = {u,, u,} andB' ={u/, u,’} for R?, where
u,= (1, 0),u,= (0, 1);
u,’=(1, 1),u,’ = (2, 1).
Find the transition matrix frorB' to B.
Find [v]gif [Vv]g = [-3 5]".
» Solution:

First we must find the coordinate matrices forrieg basis vectons,’
andu,’ relative to the old basiB.

By inspectioru’, = u, + U, so that
1 2 u/l = U] + U
i, =[] anefu =] wh = 20y + s
Thus, the transition matrix frol to B is
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Example (Finding a Transition Matrix)

12
P = 11

» Using the transition matrix yields

-

V)5 = [1 |
» As a check, we should be able to recover the vector
either from y]g or [V]5.

» -3U,"+ 5U,' = 7u; + 2u,=v = (7,2)




Example (A Different Viewpoint)

u, = (1, 0),u,= (0, 1uy’ = (1, 1),u, = (2, 1)

» In the previous example, we found the transition matrix from

the basid’ to the basid. However, we can just as well ask for
the transition matrix fronB to B'.

» We simply change our point of view and regBrds the old
basis andB as the new basis.

» As usual, the columns of the transition matrix will be the
coordinates of the new basis vectors relative to the old basis.

U, =-u; +U,;u,=2u;, — Uy,



12 ~1 2
Remarks P= [1 1] 0= [ 1 —1]

» If we multiply the transition matrix fror8’ to B and the
transition matrix fronB to B’, we find

PQ:Eﬂ [—11 _21]:[3(1)]:]

Q=P



Linear Transformations

» Consider a linear transformatian r» — r» andlet Dbeits
representation with respect{e e, ....e,} and its
representation with respect{ig. e, ..., e,,}

» Lety =4z andy =Bz . Therefore,

Yy =Ty=TAx = Bx' = BTx
and henceA = BT ,0ELT 'BT

» TWo nxn matricea and aeilar if there exists a
nonsingular matrixx such that- 7-'BT

» In conclusion, similar matrices
correspond to the same linear
. . r Al lB
transformation with respect to -
' Y <45 o
difference bases. .

——> output

input

/
T <--rrr> &
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Eigenvalues and Eigenvectors

4

LetA be am xn square matrix. A scalar and a nonzero
vectory satisfying the equation = \v are said to be,
respectively, amigenvalue and aneigenvector of A.

The matrixat - A must be singular; thatig)r — A) =0

This leads to anth-order polynomial equation

detOA\ — A) =N+ a, N1+ +ar+ay=0
The polynomialet(a1 — A) Is called tbiearacteristic
polynomial, and the equation is called ttiearacteristic

equation.



Eigenvalues and Eigenvectors

» Suppose that the characteristic equatianr — 4) = o n has
distinct roots\;, x..... A, . Then, there erifihearly
Independent vectors, v,, ..., v, such that

Av, = \v, 1=1,2,...,n

» Consider a basis formed by a linearly independent set of
eigenvectorsy,, v,,..,v,} . With respect to this basis, the matrix
IS diagonal.

» LetT = v, vy, ....0,] ! TAT ™' =TA[v, v, ..., v,

= T[Av,, Av,, ..., Av,| = T|\v1, \ava, ..., \,0,)]
',\1 0 --- 0] ',\1 0 --- 0]

_ e 0 Ay --- 0 0 Ay --- 0

0 0 -+ Ay 0 0 - Ay
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Eigenvalues and Eigenvectors

<
<

A matrix A is symmetric ifA = A’

Theorem 3.2: All eigenvalues of a real symmetric matrix are
real.

Theorem 3.3: Any real symmetric »  matrix has a set of
eigenvectors that are mutually orthogonal. (i.e., this matrix can
be orthogonally diagonalized)

If A Is symmetric, then a set of its eigenvectors forms an
orthogonal basis fdr". If the basigv,,v,,...,v»,} IS hormalized
so that each element has norm of unity, then defining the
Matrx T = v, vs, ..., v,]

we haver’'r=1 ,or’=17"

A matrix whose transpose is its inverse is said to be an
orthogonal matrix.
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Example

» Find an orthogonal matrii that diagonalizes

» Solution:

The characteristic equation Afis

(A-4

-2 -2

detfdl ~A)=det -2 A-4 -2

-2

-2 A-4

The basis of the eigenspace correspondingt@® is u,=| 1 | andu,=| 0
Applying the Gram-Schmidt process to,{ u,} yields

the following orthonormal eigenvectors:

12

4 2 2
A=|12 4 2
2 2 4
=4- DA- 8
1 ]
L O_ - 1_
-1//2] —11/6
vV, = 1//2 andv, =| - 14/ 6
0 216




Example

The basis of the eigenspace corresponding=t8 is u, =
Applying the Gram-Schmidt process{td,} yields:

(1/3
v, =|1/4/3
1/4/3

Thus,

_1/J2 -1/J6 1/43]
P=[v, v, v,]=| 1/V2 -1/6 1/43
0 2/6  1/+/3

orthogonally diagonalizeA.
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Orthogonal Projections

4

If v is a subspace &', then theorthogonal complement of v,
denoted by , consists of all vectors that are orthogonal to
every vector inv , 1.et = {z: v’z =0 for all v € V)

The orthogonal complement of is also a subspace.

Togethery and-+ sp&inthe sense that every vector r»
can be represented uniquely.asz, + «, , Wherey x, and

The representation above is tr¢hogonal decomposition of =

We say that;, angd, avgthogonal projectionsof , onto the
subspacesy and |, respectively. We writey ¢ V-t and
say thaR"is adirect sumof y andyt . We say that a linear
transformatiorp is aorthogonal projector ontoy if for allz € r»
we haverz cv angd- pz ey

14



Orthogonal Projections

» Theorem 3.4: Leh ¢ r»» , thenge orimageof A can be
denoted

R(A) = {Axz : ¢ € R"} Column space
» Thenullspace or kernel of A can be denoted
N(A) & {z c R": Az = 0}
» R(A)andr(A) are subspaces.
» R(A): =N(A") and (AL = R(AT) (fofmndamental spacesin
Linear Algebra) Row space

» If P Is an orthogonal projector onto , then- » fox aly
andr(p) =y

» Theorem 3.5: Amatriyr Is an orthogonal projector if and only

if pP2—-p - p’

15



Quadratic Forms

CL1£L‘% + CLQSC% + A3 » [331 332] [ ai CL3/2] [xli

a3/2 a9 L9
alx% + agxg + a;;x% + asxr1x9 + asxri1x3 + agroxs

Car ay/2 a5/2] [

» [wl T 333] as/2 as ag/2| |wo

_a5/2 CL6/2 as i T3

» A quadratic formyf: r" — Rk* is a functiog) = 2" Q= , where
IS ann x » real matrix. There is no loss of generality in
assumingq to be symmetrg= @’

2 5| |x
2 e
22" + 6xy — Ty [x y] [1 _7] [y]
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Quadratic Forms 2 +om-mi=( o[} 22| =t a [ 2] ]:]

» For if the matrixg is not symmetric, we can always replace it
with the symmetric

1
=Qi =5(@+Q")
r'Qx =21 Qux =z (%Q + %QT>w
» A quadratic form:“Qz IS said to pesitive definiteif z7Qx > 0
for all nonzero vectors . It @sitive semidefinite if z7Qzx > o

for all =z . Similarly, we define the quadratic form to be
negative definite, or negative semidefinite, if ’Qx <0 Orz’Qax < 0
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Quadratic Forms

» Theprincipal minorsfor a matrixQ areet(Q) itself and the
determinants of matrices obtained by successively removing an
ith row and anth column.

» Theleading principal minorsaredet(Q) and the minors
obtained by successive removing the last row and the last
column.

A1 = qu Ay = det [qn Q12]
21 422

-Q11 d12 CJ13_ \
Az =det [ g1 @2 o3 Ay = det(Q)

| 431 432 33
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Quadratic Forms

» Theorem 3.6 Sylvester’s Criterion A quadratic formy”’Qz. Q = Q"
IS positive definite if and only if the leading principal minorg)of
are positive.

» Note that ifQ is not symmetric, Sylvester’s criterion cannot be
used.

» A necessary condition for a real quadratic form to be positive
semidefinite is that the leading principal minors be nonnegative.
However, it isnot a sufficient condition. In fact, a real quadratic
form is positive semidefinite if and only if gfincipal minors
are nonnegative.

19



Quadratic Forms

» A symmetric matrixQ Is said to Ipesitive definiteif the
guadratic form:’Q« IS positive definite.

» If Q Is positive definite, we writ@ > 0

» Positive semidefinite, negative definite, negative semidefinite
properties are defined similarly.

» The symmetric matrixQ isdefiniteif it is neither positive
semidefinite nor negative semidefinite.

» Theorem 3.7: Asymmetric matr@@ IS positive definite (or
positive semidefinite) if and only if all eigenvaluespf are
positive (or nonnegative)
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Matrix Norms

4

The norm of a matrixda , denoted||y , Is any function that
satisfies the following conditions:

|A] > 0if A+# O, and ||O]| = 0, whereO is a matrix with all entries
equal to zero.

|cAl|l = |c||Al|, for any ¢ € R

A+ B| < |A]+|B]
An example of a matrix norm is tIFelgbenius norm, defined
as [ Allr = (X0 X))
Note that the Frobenius norm is equivalent to the Euclidean
norm onR™.,

For our purpose, we consider only matrix norms satisfying the
addition conditiontAB|| < | A||||B|
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Matrix Norms

4

In many problems, both matrices and vectors appear
simultaneously. Therefore, it is convenient to construct the
matrix norm in such a way that it will be related to vector
norms.

To this end we consider a special class of matrix norms, called
Induced norms.

Letl‘lly and-llw be vector normsRfrandR™, respectively.
We say that the matrix normiisduced by, or iscompatible
with, the given vector norms if for any matuxe rm»» and
any vectorr ¢ R* , the following inequality is satisfied:

Az |y < [[A]lll2]

22



Matrix Norms

» We can define an induced matrix norm as
|A[l = maxz), -1 Az )
that is,||A] Is the maximum of the norms of the veciars
where the vectat runs over the set of all vectors with unit
norm. We may omit the subscripts in the following.

» For each matria  the maximumax, || Az| IS attainable;
that is, a vectog, exists such that|| =1 |Angl| = [|A|

23



Matrix Norms

» Theorem 3.8: Let i N
2 = (Siilnl?) = Vi)

the matrix norm induced by this vector norm is

lAl = v\
where )\, Is the largest eigenvalue of the mattix

» Rayleigh’s Inequality: If ann x » matrixp is real symmetric
positive definite, then

)\mm<P>HwH2 < z! Px < )‘maaz(P)Hm”Q
where),;,(P) denotes the smallest eigenvalue of ), ane
denotes the largest eigenvaluermf
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Matrix Norms A- E ;]

» Consider the matrix and let the normRhbe given by

|zl = /o1 + 23

T, |54
Then, ATA = [4 5]

anddet(A\I, — ATA) =X —10A +9=(A—1)(A -9

Thus,|A| = V9 =3

The eigenvector of’4  correspondingte o, isL H
Note thatllAz:[| = [|A] > 1111 3

| Az || = H% [1 2] H H - %H H H -

Becausel = A’ in this example, we hgdg = max; <<, |\i(A)
However, in generl|| # max;<i<, |Ni(A) . Indeed, we have
IA] = maxi<i<n [Ai(A)
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Example
01 00
A:[O _ ATA:L 0]

: A0
det|\Iy — AT A] = det [O - 1] = AA—1)

» Note that O is the only eigenvalueof . Thus,iferi, 2 ,
|A] =1>|X(A)] =0
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