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Linear Transformations
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� A function                   is called a linear transformation if
� 1.                         for every             and 

� 2.                                      for every 

� If we fix the bases for      and      , then the linear 
transformation can be represented by a matrix. 

� Theorem 3.1: Suppose that           is a given vector, and     is the 
representation of     with respect to the given basis for     . If 
and     is the representation of    with respect to the given basis 
for     , then            , where               and is called the matrix 
representation of    . 

� Special case: with respect to natural bases for      and 



Linear Transformations
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� Let                    and                    be two bases for    . Define the 
matrix 

that is, the ith column of     is the vector of coordinates of     
with respect to the basis                    . 

� Given a vector, let    be the coordinates of the vector with 
respect to                    and     be the coordinates of the same 
vector with respect to                   . Then,            . 
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Example (Finding a Transition Matrix)
� Consider bases B = {u1, u2} and B′ = {u1’, u2’} for R2, where 

u1 = (1, 0), u2 = (0, 1);
u1’ = (1, 1), u2’ = (2, 1). 

Find the transition matrix from B′ to B.
Find [v]B if [v]B’ = [-3 5]T.

� Solution:
� First we must find the coordinate matrices for the new basis vectors u1’ 

and u2’ relative to the old basis B. 
� By inspection u′1 = u1 + u2 so that

� Thus, the transition matrix from B′ to B is 
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Example (Finding a Transition Matrix)

� Using the transition matrix yields

� As a check, we should be able to recover the vector v
either from [v]B or [v]B’. 

� -3u1’ + 5u2’ = 7u1 + 2u2 = v = (7,2)
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Example (A Different Viewpoint)
u1 = (1, 0), u2 = (0, 1); u1’ = (1, 1), u2’ = (2, 1)

� In the previous example, we found the transition matrix from 
the basis B’ to the basis B. However, we can just as well ask for 
the transition matrix from B to B’. 

� We simply change our point of view and regard B’ as the old 
basis and B as the new basis. 

� As usual, the columns of the transition matrix will be the 
coordinates of the new basis vectors relative to the old basis. 

u1 = -u1’ + u2’;u2 = 2u1’ – u2’ 
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Remarks

� If we multiply the transition matrix from B’ to B and the 
transition matrix from B to B’, we find
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Linear Transformations
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� Consider a linear transformation                   and let     be its 
representation with respect to                    and      its 
representation with respect to                   .

� Let            and             . Therefore, 

and hence              , or 

� Two          matrices and     are similar if there exists a 
nonsingular matrix     such that                 .

� In conclusion, similar matrices 
correspond to the same linear 
transformation with respect to 
difference bases. 

input

output



Eigenvalues and Eigenvectors
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� Let     be an          square matrix. A scalar    and a nonzero 
vector    satisfying the equation              are said to be, 
respectively, an eigenvalue and an eigenvector of    . 

� The matrix            must be singular; that is, 

� This leads to an nth-order polynomial equation

The polynomial                 is called the characteristic 
polynomial, and the equation is called the characteristic 
equation. 



Eigenvalues and Eigenvectors
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� Suppose that the characteristic equation                       has n
distinct roots                 . Then, there exist n linearly 
independent vectors                  such that 

� Consider a basis formed by a linearly independent set of 
eigenvectors                   . With respect to this basis, the matrix    
is diagonal. 

� Let 



Eigenvalues and Eigenvectors
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� A matrix is symmetric if             . 

� Theorem 3.2: All eigenvalues of a real symmetric matrix are 
real. 

� Theorem 3.3: Any real symmetric         matrix has a set of n
eigenvectors that are mutually orthogonal. (i.e., this matrix can 
be orthogonally diagonalized)

� If      is symmetric, then a set of its eigenvectors forms an 
orthogonal basis for Rn. If the basis                     is normalized 
so that each element has norm of unity, then defining the 
matrix 
we have              , or 

� A matrix whose transpose is its inverse is said to be an 
orthogonal matrix. 
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Example 
� Find an orthogonal matrix P that diagonalizes

� Solution: 
� The characteristic equation of A is

� The basis of the eigenspace corresponding to λ = 2 is

� Applying the Gram-Schmidt process to {u1, u2} yields 
the following orthonormal eigenvectors:
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Example 
� The basis of the eigenspace corresponding to λ = 8 is

� Applying the Gram-Schmidt process to { u3} yields:

� Thus,

orthogonally diagonalizes A.
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Orthogonal Projections
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� If     is a subspace of Rn, then the orthogonal complement of    , 
denoted by     , consists of all vectors that are orthogonal to 
every vector in    , i.e. 

� The orthogonal complement of     is also a subspace. 

� Together,     and       span Rn in the sense that every vector 
can be represented uniquely as                 , where            and 

� The representation above is the orthogonal decomposition of 

� We say that     and      are orthogonal projections of    onto the 
subspaces      and      , respectively. We write                   and 
say that Rn is a direct sum of     and      . We say that a linear 
transformation     is an orthogonal projector onto    if for all 
we have            and 



Orthogonal Projections
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� Theorem 3.4: Let               , the range or image of      can be 
denoted

� The nullspace or kernel of     can be denoted 

� and          are subspaces. 

� and                           (four fundamental spaces in 
Linear Algebra)

� If     is an orthogonal projector onto    , then            for all          , 
and 

� Theorem 3.5: A matrix     is an orthogonal projector if and only 
if 

Column space

Row space



Quadratic Forms
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� A quadratic form                   is a function                   , where    
is an         real matrix. There is no loss of generality in 
assuming     to be symmetric: 



Quadratic Forms
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� For if the matrix     is not symmetric, we can always replace it 
with the symmetric

� A quadratic form          is said to be positive definite if                
for all nonzero vectors   . It is positive semidefinite if                
for all    . Similarly, we define the quadratic form to be 
negative definite, or negative semidefinite, if                or 



Quadratic Forms
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� The principal minors for a matrix     are           itself and the 
determinants of matrices obtained by successively removing an 
ith row and an ith column. 

� The leading principal minors are           and the minors 
obtained by successive removing the last row and the last 
column. 

…



Quadratic Forms
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� Theorem 3.6 Sylvester’s Criterion: A quadratic form                      
is positive definite if and only if the leading principal minors of 
are positive. 

� Note that if     is not symmetric, Sylvester’s criterion cannot be 
used. 

� A necessary condition for a real quadratic form to be positive 
semidefinite is that the leading principal minors be nonnegative. 
However, it is not a sufficient condition. In fact, a real quadratic 
form is positive semidefinite if and only if all principal minors 
are nonnegative. 



Quadratic Forms
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� A symmetric matrix     is said to be positive definite if the 
quadratic form          is positive definite. 

� If     is positive definite, we write 

� Positive semidefinite, negative definite, negative semidefinite
properties are defined similarly. 

� The symmetric matrix     is indefinite if it is neither positive 
semidefinite nor negative semidefinite. 

� Theorem 3.7: A symmetric matrix     is positive definite (or 
positive semidefinite) if and only if all eigenvalues of     are 
positive (or nonnegative)



Matrix Norms
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� The norm of a matrix    , denoted by       , is any function that 
satisfies the following conditions:
� , where     is a matrix with all entries 

equal to zero. 

�

�

� An example of a matrix norm is the Frobenius norm, defined 
as

� Note that the Frobenius norm is equivalent to the Euclidean 
norm on Rmn. 

� For our purpose, we consider only matrix norms satisfying the 
addition condition: 



Matrix Norms
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� In many problems, both matrices and vectors appear 
simultaneously. Therefore, it is convenient to construct the 
matrix norm in such a way that it will be related to vector 
norms. 

� To this end we consider a special class of matrix norms, called 
induced norms. 

� Let          and          be vector norms on Rn and Rm, respectively. 
We say that the matrix norm is induced by, or is compatible
with, the given vector norms if for any matrix                 and 
any vector            , the following inequality is satisfied: 



Matrix Norms
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� We can define an induced matrix norm as 

that is,         is the maximum of the norms of the vectors       
where the vector    runs over the set of all vectors with unit 
norm. We may omit the subscripts in the following. 

� For each matrix     the maximum                        is attainable; 
that is, a vector      exists such that               and 



Matrix Norms
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� Theorem 3.8: Let 

the matrix norm induced by this vector norm is 

where      is the largest eigenvalue of the matrix 

� Rayleigh’s Inequality: If an          matrix     is real symmetric 
positive definite, then 

where             denotes the smallest eigenvalue of    , and 
denotes the largest eigenvalue of . 



Matrix Norms
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� Consider the matrix and let the norm in R2 be given by 

Then, 

and 
Thus, 

� The eigenvector of         corresponding to           is 

� Note that     

� Because             in this example, we have                                   . 
However, in general                                  . Indeed, we have 



Example
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� Note that 0 is the only eigenvalue of    . Thus, for            , 


