Chapter 3 Transformations

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

Linear Transformations

• A function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if

▶ 1. $\mathcal{L}(a\mathbf{x}) = a\mathcal{L}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and $a \in \mathbb{R}$

▶ 2. $\mathcal{L}(\boldsymbol{x} + \boldsymbol{y}) = \mathcal{L}(\boldsymbol{x}) + \mathcal{L}(\boldsymbol{y})$ for every $\boldsymbol{x}, \boldsymbol{y} \in R^n$

- ▶ If we fix the bases for *Rⁿ* and *R^m*, then the linear transformation can be represented by a matrix.
- Theorem 3.1: Suppose that *x* ∈ *Rⁿ* is a given vector, and *x'* is the representation of *x* with respect to the given basis for *Rⁿ*. If *y* = *L*(*x*) and *y'* is the representation of *y* with respect to the given basis for *R^m*, then *y'* = *Ax'*, where *A* ∈ *R^{m×n}* and is called the *matrix representation* of *L*.
- Special case: with respect to natural bases for Rⁿ and R^m
 y = L(x) = Ax

Linear Transformations

• Let $\{e_1, e_2, ..., e_n\}$ and $\{e'_1, e'_2, ..., e'_n\}$ be two bases for \mathbb{R}^n . Define the matrix

$$oldsymbol{T} = [oldsymbol{e}_1', oldsymbol{e}_2', ..., oldsymbol{e}_n']^{-1} [oldsymbol{e}_1, oldsymbol{e}_2, ..., oldsymbol{e}_n] \ [oldsymbol{e}_1, oldsymbol{e}_2, ..., oldsymbol{e}_n] = [oldsymbol{e}_1', oldsymbol{e}_2', ..., oldsymbol{e}_n']oldsymbol{T}$$

that is, the *i*th column of T is the vector of coordinates of e_i with respect to the basis $\{e'_1, e'_2, ..., e'_n\}$.

▶ Given a vector, let *x* be the coordinates of the vector with respect to {*e*₁, *e*₂, ..., *e*_n} and *x'* be the coordinates of the same vector with respect to {*e*'₁, *e*'₂, ..., *e*'_n}. Then, *x'* = *Tx*.

Example (Finding a Transition Matrix)

• Consider bases $B = {\mathbf{u}_1, \mathbf{u}_2}$ and $B' = {\mathbf{u}_1', \mathbf{u}_2'}$ for R^2 , where $\mathbf{u}_1 = (1, 0), \mathbf{u}_2 = (0, 1);$ $\mathbf{u}_1' = (1, 1), \mathbf{u}_2' = (2, 1).$

Find the transition matrix from B' to B.

- Find $[v]_B$ if $[v]_{B'} = [-3 5]^T$.
- Solution:
 - First we must find the coordinate matrices for the new basis vectors u₁' and u₂' relative to the old basis B.
 - By inspection $\mathbf{u'}_1 = \mathbf{u}_1 + \mathbf{u}_2$ so that

$$\mathbf{u}_{1}'_{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{u}_{2}' \end{bmatrix}_{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\mathbf{u}_{1}' = \mathbf{u}_{1} + \mathbf{u}_{2}$
 $\mathbf{u}_{2}' = 2\mathbf{u}_{1} + \mathbf{u}_{2}$

• Thus, the transition matrix from *B*' to *B* is

$$P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Example (Finding a Transition Matrix)

$$P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Using the transition matrix yields

$$[\boldsymbol{v}]_B = \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3\\ 5 \end{bmatrix} = \begin{bmatrix} 7\\ 2 \end{bmatrix}$$

 As a check, we should be able to recover the vector v either from [v]_B or [v]_B['].

•
$$-3\mathbf{u}_1' + 5\mathbf{u}_2' = 7\mathbf{u}_1 + 2\mathbf{u}_2 = \mathbf{v} = (7,2)$$

Example (A Different Viewpoint)

 $\mathbf{u}_1 = (1, 0), \, \mathbf{u}_2 = (0, 1); \, \mathbf{u}_1' = (1, 1), \, \mathbf{u}_2' = (2, 1)$

- In the previous example, we found the transition matrix from the basis B' to the basis B. However, we can just as well ask for the transition matrix from B to B'.
- We simply change our point of view and regard *B*' as the old basis and *B* as the new basis.
- As usual, the columns of the transition matrix will be the coordinates of the new basis vectors relative to the old basis.

$$\mathbf{u}_1 = -\mathbf{u}_1' + \mathbf{u}_2'; \mathbf{u}_2 = 2\mathbf{u}_1' - \mathbf{u}_2'$$

$$[\boldsymbol{u}_1]_{B'} = \begin{bmatrix} -1\\1 \end{bmatrix} \quad [\boldsymbol{u}_2]_{B'} = \begin{bmatrix} 2\\-1 \end{bmatrix} \quad Q = \begin{bmatrix} -1 & 2\\1 & -1 \end{bmatrix}$$

Remarks $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ $Q = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$

▶ If we multiply the transition matrix from *B*' to *B* and the transition matrix from *B* to *B*', we find

$$PQ = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
$$Q = P^{-1}$$

Linear Transformations

Consider a linear transformation L: Rⁿ → Rⁿ and let A be its representation with respect to {e₁, e₂, ..., e_n} and B its representation with respect to {e'₁, e'₂, ..., e'_n}.

• Let
$$y = Ax$$
 and $y' = Bx'$. Therefore,
 $y' = Ty = TAx = Bx' = BTx$

and hence TA = BT, or $A = T^{-1}BT$

- Two $n \times n$ matrices *A* and *B* are *similar* if there exists a nonsingular matrix *T* such that $A = T^{-1}BT$.
- In conclusion, similar matrices correspond to the same linear transformation with respect to difference bases.

Eigenvalues and Eigenvectors

- Let A be an n×n square matrix. A scalar λ and a nonzero vector v satisfying the equation Av = λv are said to be, respectively, an *eigenvalue* and an *eigenvector* of A.
- The matrix $\lambda I A$ must be singular; that is, $det(\lambda I A) = 0$
- ▶ This leads to an *n*th-order polynomial equation

 $det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$ The polynomial $det(\lambda I - A)$ is called the *characteristic polynomial*, and the equation is called the *characteristic equation*.

Eigenvalues and Eigenvectors

Suppose that the characteristic equation det(λ*I* – *A*) = 0 has *n* distinct roots λ₁, λ₂, ..., λ_n. Then, there exist *n* linearly independent vectors *v*₁, *v*₂, ..., *v*_n such that

$$Av_i = \lambda_i v_i$$
 $i = 1, 2, ..., n$

Consider a basis formed by a linearly independent set of eigenvectors {v₁, v₂, ..., v_n}. With respect to this basis, the matrix A is *diagonal*.

$$\textbf{Let } \boldsymbol{T} = [\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n]^{-1} \qquad \boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1} = \boldsymbol{T} \boldsymbol{A} [\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n] \\ = \boldsymbol{T} [\boldsymbol{A} \boldsymbol{v}_1, \boldsymbol{A} \boldsymbol{v}_2, ..., \boldsymbol{A} \boldsymbol{v}_n] = \boldsymbol{T} [\lambda_1 \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2, ..., \lambda_n \boldsymbol{v}_n] \\ = \boldsymbol{T} \boldsymbol{T}^{-1} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Eigenvalues and Eigenvectors

- A matrix A is symmetric if $A = A^T$.
- Theorem 3.2: All eigenvalues of a real symmetric matrix are real.
- Theorem 3.3: Any real symmetric n × n matrix has a set of n eigenvectors that are mutually orthogonal. (i.e., this matrix can be orthogonally diagonalized)
- If A is symmetric, then a set of its eigenvectors forms an orthogonal basis for Rⁿ. If the basis {v₁, v₂, ..., v_n} is normalized so that each element has norm of unity, then defining the matrix T = [v₁, v₂, ..., v_n] we have T^TT = I, or T^T = T⁻¹
- A matrix whose transpose is its inverse is said to be an *orthogonal matrix*.

Example

- Find an orthogonal matrix *P* that diagonalizes $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$
- Solution:
 - The characteristic equation of A is

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 4 & -2 & -2 \\ -2 & \lambda - 4 & -2 \\ -2 & -2 & \lambda - 4 \end{bmatrix} = (\lambda - 2)^2 (\lambda - 8) = 0$$

$$\begin{bmatrix} -1 \end{bmatrix}$$

- The basis of the eigenspace corresponding to $\lambda = 2$ is $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Applying the <u>Gram-Schmidt process</u> to $\{\mathbf{u}_1, \mathbf{u}_2\}$ yields the following orthonormal eigenvectors:

$$\mathbf{v}_{1} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \text{ and } \mathbf{v}_{2} = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}$$

12

Example

• The basis of the eigenspace corresponding to $\lambda = 8$ is $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• Applying the Gram-Schmidt process to $\{\mathbf{u}_3\}$ yields:

$$\mathbf{v}_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

Thus,

$$P = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3] = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$
orthogonally diagonalizes A.

Orthogonal Projections

- If V is a subspace of Rⁿ, then the *orthogonal complement* of V, denoted by V[⊥], consists of all vectors that are orthogonal to every vector in V, i.e. V[⊥] = {x : v^Tx = 0 for all v ∈ V}
- The orthogonal complement of v is also a subspace.
- ► Together, V and V[⊥] span Rⁿ in the sense that every vector x ∈ Rⁿ can be represented uniquely as x = x₁ + x₂, where x₁ ∈ V and x₂ ∈ V[⊥]
- > The representation above is the *orthogonal decomposition* of x
- We say that x₁ and x₂ are orthogonal projections of x onto the subspaces V and V[⊥], respectively. We write Rⁿ = V ⊕ V[⊥] and say that Rⁿ is a direct sum of V and V[⊥]. We say that a linear transformation P is an orthogonal projector onto V if for all x ∈ Rⁿ we have Px ∈ V and x Px ∈ V[⊥]

Orthogonal Projections

- Theorem 3.4: Let $A \in \mathbb{R}^{m \times n}$, the *range* or *image* of A can be denoted $\mathcal{R}(A) \triangleq \{Ax : x \in \mathbb{R}^n\}$ Column space
- > The *nullspace* or *kernel* of *A* can be denoted

 $\mathcal{N}(\boldsymbol{A}) \triangleq \{ \boldsymbol{x} \in R^n : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{0} \}$

- $\blacktriangleright \mathcal{R}(\mathbf{A})$ and $\mathcal{N}(\mathbf{A})$ are subspaces.
- $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{T}) \text{ and } \mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^{T}) \text{ (four$ *fundamental spaces*in Linear Algebra)*Row space* $}$
- If P is an orthogonal projector onto V, then Px = x for all $x \in V$, and $\mathcal{R}(P) = V$
- Theorem 3.5: A matrix *P* is an orthogonal projector if and only if *P*² = *P* = *P*^T

A quadratic form f: Rⁿ → Rⁿ is a function f(x) = x^TQx, where Q is an n × n real matrix. There is no loss of generality in assuming Q to be symmetric: Q = Q^T

$$2x^{2} + 6xy - 7y^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Quadratic Forms $2x^2 + 6xy - 7y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• For if the matrix *Q* is not symmetric, we can always replace it with the symmetric

$$oldsymbol{Q}_0 = oldsymbol{Q}_0^T = rac{1}{2} \Big(oldsymbol{Q} + oldsymbol{Q}^T \Big)$$

 $oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T \Big(oldsymbol{Q}_0 oldsymbol{x} = oldsymbol{x}^T \Big(oldsymbol{Q}_0 oldsymbol{x} = oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T oldsymbol{x} = oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T oldsymbol{x} = oldsymbol{x}^T oldsymbol{Q} oldsymbol{x} = oldsymbol{x}^T oldsymbol{x} = oldsymbol{x}^T$

 A quadratic form x^TQx is said to be *positive definite* if x^TQx > 0 for all nonzero vectors x. It is *positive semidefinite* if x^TQx ≥ 0 for all x. Similarly, we define the quadratic form to be *negative definite*, or *negative semidefinite*, if x^TQx < 0 or x^TQx ≤ 0

- The *principal minors* for a matrix *Q* are det(*Q*) itself and the determinants of matrices obtained by successively removing an *i*th row and an *i*th column.
- The *leading principal minors* are det(*Q*) and the minors obtained by successive removing the last row and the last column.

$$\Delta_{1} = q_{11} \qquad \Delta_{2} = \det \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$
$$\Delta_{3} = \det \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} \qquad \cdots \qquad \Delta_{n} = \det(\mathbf{Q})$$

- Theorem 3.6 Sylvester's Criterion: A quadratic form x^TQx, Q = Q^T, is positive definite if and only if the leading principal minors of Q are positive.
- Note that if *Q* is not symmetric, Sylvester's criterion cannot be used.
- A *necessary* condition for a real quadratic form to be positive semidefinite is that the leading principal minors be nonnegative. However, it is *not* a *sufficient* condition. In fact, a real quadratic form is positive semidefinite if and only if all *principal minors* are nonnegative.

- A symmetric matrix Q is said to be *positive definite* if the quadratic form x^TQx is positive definite.
- If Q is positive definite, we write Q > 0
- Positive semidefinite, negative definite, negative semidefinite properties are defined similarly.
- The symmetric matrix *Q* is *indefinite* if it is neither positive semidefinite nor negative semidefinite.
- Theorem 3.7: A symmetric matrix *Q* is positive definite (or positive semidefinite) if and only if all eigenvalues of *Q* are positive (or nonnegative)

- The norm of a matrix A, denoted by ||A||, is any function that satisfies the following conditions:
 - $\|A\| > 0$ if $A \neq O$, and $\|O\| = 0$, where *O* is a matrix with all entries equal to zero.
 - $||c\mathbf{A}|| = |c|||\mathbf{A}||, \text{ for any } c \in R$

 $\blacktriangleright \|\boldsymbol{A} + \boldsymbol{B}\| \leq \|\boldsymbol{A}\| + \|\boldsymbol{B}\|$

- An example of a matrix norm is the *Frobenius norm*, defined as $\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2\right)^{1/2}$
- Note that the Frobenius norm is equivalent to the Euclidean norm on R^{mn} .
- For our purpose, we consider only matrix norms satisfying the addition condition: $||AB|| \le ||A|| ||B||$

- In many problems, both matrices and vectors appear simultaneously. Therefore, it is convenient to construct the matrix norm in such a way that it will be related to vector norms.
- To this end we consider a special class of matrix norms, called *induced norms*.
- Let ||·||_(n) and ||·||_(m) be vector norms on Rⁿ and R^m, respectively. We say that the matrix norm is *induced* by, or is *compatible* with, the given vector norms if for any matrix A ∈ R^{m×n} and any vector x ∈ Rⁿ, the following inequality is satisfied: ||Ax||_(m) ≤ ||A||||x||_(n)

• We can define an induced matrix norm as

$$\|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|_{(n)}=1} \|\boldsymbol{A}\boldsymbol{x}\|_{(m)}$$

that is, ||A|| is the maximum of the norms of the vectors Axwhere the vector x runs over the set of all vectors with unit norm. We may omit the subscripts in the following.

• For each matrix A the maximum $\max_{\|x\|=1} \|Ax\|$ is attainable; that is, a vector x_0 exists such that $\|x_0\| = 1$ and $\|Ax_0\| = \|A\|$

• Theorem 3.8: Let $\|\boldsymbol{x}\| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2} = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$

the matrix norm induced by this vector norm is $\|\mathbf{A}\| = \sqrt{\lambda_1}$

where λ_1 is the largest eigenvalue of the matrix $A^T A$

• **Rayleigh's Inequality**: If an $n \times n$ matrix *P* is real symmetric positive definite, then

 $\lambda_{min}(\boldsymbol{P}) \| \boldsymbol{x} \|^2 \leq \boldsymbol{x}^T \boldsymbol{P} \boldsymbol{x} \leq \lambda_{max}(\boldsymbol{P}) \| \boldsymbol{x} \|^2$

where $\lambda_{min}(\mathbf{P})$ denotes the smallest eigenvalue of \mathbf{P} , and $\lambda_{max}(\mathbf{P})$ denotes the largest eigenvalue of \mathbf{P} .

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

• Consider the matrix and let the norm in R^2 be given by

Then,
$$\boldsymbol{A}^T \boldsymbol{A} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \|\boldsymbol{x}\| = \sqrt{x_1^2 + x_2^2}$$

and
$$det(\lambda I_2 - A^T A) = \lambda^2 - 10\lambda + 9 = (\lambda - 1)(\lambda - 9)$$

Thus, $||A|| = \sqrt{9} = 3$

• The eigenvector of $A^T A$ corresponding to $\lambda_1 = 9$ is $x_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ • Note that $\|Ax_1\| = \|A\|$

Note that
$$\|\mathbf{A}\mathbf{x}_1\| = \|\mathbf{A}\|$$

 $\|\mathbf{A}\mathbf{x}_1\| = \left\|\frac{1}{\sqrt{2}}\begin{bmatrix}2 & 1\\1 & 2\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\right\| = \frac{1}{\sqrt{2}}\left\|\begin{bmatrix}3\\3\end{bmatrix}\right\| = 3$

• Because $A = A^T$ in this example, we have $||A|| = \max_{1 \le i \le n} |\lambda_i(A)|$. However, in general $||A|| \ne \max_{1 \le i \le n} |\lambda_i(A)|$. Indeed, we have $||A|| \ge \max_{1 \le i \le n} |\lambda_i(A)|$

Example

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \boldsymbol{A}^T \boldsymbol{A} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$\det[\lambda \boldsymbol{I}_2 - \boldsymbol{A}^T \boldsymbol{A}] = \det\begin{bmatrix} \lambda & 0 \\ 0 & \lambda - 1 \end{bmatrix} = \lambda(\lambda - 1)$$

• Note that 0 is the only eigenvalue of A. Thus, for i = 1, 2, $||A|| = 1 > |\lambda_i(A)| = 0$